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Abstract. In many real world situations, like minor traffic offenses in
big cities, a central authority is tasked with periodic administering pun-
ishments to a large number of individuals. Common practice is to give
each individual a chance to suffer a smaller fine and be guaranteed to
avoid the legal process with probable considerably larger punishment.
However, thanks to the large number of offenders and a limited capac-
ity of the central authority, the individual risk is typically small and a
rational individual will not choose to pay the fine. Here we show that if
the central authority processes the offenders in a publicly known order,
it properly incentives the offenders to pay the fine. We show analyti-
cally and on realistic experiments that our mechanism promotes non-
cooperation and incentives individuals to pay. Moreover, the same holds
for an arbitrary coalition. We quantify the expected total payment the
central authority receives, and show it increases considerably.

Keywords: rule enforcing; mechanism design; non-cooperation

1 Introduction

In this work, we study a special case of a classic dilemma, how to effectively
enforce a rule in a large population with only a very small number of enforcing
agents. This task is impossible if the large population cooperates and thus a
critical aspect of any suggested mechanism is the promotion of non-cooperation.
A well-known count Dracula way is to make the punishment for breaking the
rule extremely severe. We suggest an alternative mechanism, for a special case
of the dilemma motivated by collecting fines for traffic violations.

In many large cities, there is a huge number of traffic offences, highly ex-
ceeding the capacity of state employees assigned to manage them. The assigned
state employees should primarily concentrate on serious and repetitive offenders.
However, a large number of minor offences are still to be settled which makes the
former considerably harder. A common practise is that a smaller fine is assigned
in an almost automated way and if an offender settles this fine then the legal
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process does not start. Otherwise, the legal process should start with consid-
erably larger cost for the offender. The offence is also forgotten after a certain
judiciary period.

However, thanks to the limited capacity of state employees, legal processes
for non-repetitive minor traffic offenses are typically enforced in a small number
of cases1. The individual risk is thus small and a large fraction of the offenders
choose to ignore the fine. In this paper, we propose a simple mechanism which
properly incentives the offenders to pay the fine even under these conditions.

1.1 Main Contribution

In our proposed mechanism, the central authority processes the offenders in a
given order. Each offender is aware of his position in this ‘queue of offenders’
and has the option of publicly donating money to a fund of traffic infrastructure
or a charity predetermined by the central authority. If their total donations
amount to at least the fine, it is used to settle the offence. After the judiciary
period expires, or if the legal process is started, the fund retains the individual
donation. The central authority periodically sorts offenders in ascending order
of their average donation, and starts the legal process with those who paid the
least on average.

Compared to processing the offenders in random order, this mechanism in-
creases the individual risk of some offenders. This incentives them to pay the fine,
which in turn puts others in danger. We show both analytically and on realistic
experiments that under the proposed mechanism, the strategic behaviour of the
offenders is to engage with the mechanism, and quantify the expected revenue
of the charity. Moreover, we show it is not beneficial for any group of offenders
to ignore the mechanism and share the cost of those who enter the legal process.
Finally, we study how the central authority can most efficiently use its limited
capacity to maximize the revenue of the charity.

This paper is a continuation of [1], where the authors introduced the model
studied here. We extend their work by providing a complete solution to w-Fines,
see Section 3, as well as producing more thorough numerical experiments.

1.2 Related Work

To our best knowledge, the field of non-cooperative mechanism design has not
been studied extensively yet. Our approach is somewhat similar to that of [2],
where the authors consider a variation of the elimination game which includes
bids. Our model can also be viewed as a generalization of the stopping games
[3], where participants choose a time to stop bidding and trade off their gain
from outlasting other players for the cost accumulated over time in the game. In
our case, the “prize” won by the lowest paying participant is cost of entering the
legal process. However, both approaches did not consider the ranking of players,
which is at the core of our mechanism.
1 For instance, in the city of Prague considerably more than 100 000 such offenses are

dismissed every year because the judiciary period expires.
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2 Problem Definition

Informally, we model the interaction of agents as a game we call Queue. Queue
consists of a finite sequence of Round, in which each agent can choose to pay,
however with some probability they forget and pay nothing. Those who paid at
least the fine in total, or spent enough time in Queue are removed. The rest is
ordered according to the amount they paid on average. A fixed number of those
at the start are then forced to pay a large penalty, and leave Queue. Let us now
define the interaction formally, starting with how Round is realized.

2.1 Round: One Step in Queue

Round is a parametric game O (N )=O(N , F,Q, T, k, p), where N is an ordered
subset of agents2, F ∈ N is the fine, Q > F is the cost associated with entering
the legal process, T ∈ N is the judiciary period, i.e., the number of Round
instances after which agents are removed, k ∈ N is the number of agents forced
to pay Q in each Round, p ∈ [0, 1] is the probability of ignorance.

Each a ∈ N is characterized by a triplet (na, ta,ma) and his strategy πa. The
triplet corresponds to his observations — his position na in N , the number ta
of past Round games he participated in3, and his total individual payment ma

in the past Round games.
Round proceeds in three phases

1. Each agent a ∈ N , based on his observation, declares his strategy for this
Round πa ∈ ∆F+1, where ∆ is the probability simplex. His payment µa is
then sampled from4

µa ∼ pσ0 + (1− p)πa(na, ta,ma), (1)

where σν is the pure strategy of paying ν.
2. Each agent’s total payment and time is updated

ma ← ma + µa, (2)
ta ← ta + 1, (3)

and N is sorted5 according to the ratio of current total payment and time
ma/ta.

3. Some agents are removed from N , which is done in three sub-phases. We call
such agents terminal and denote the set of terminal agents in this Round as
T .
(a) All agents a ∈ N with ma ≥ F are removed.

2 The agents are ordered according to their average payment in ascending order, i.e.
those who paid the least on average are sorted to the front of N .

3 This includes the current Round, i.e. ta ≥ 1.
4 This simulates that with probability p, the agent forgot to act in this Round.
5 We use stable sort, i.e. whenever there is a tie, the original order is preserved.
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(b) First k agents in N have their ma increased by Q and are removed.
(c) All agents a ∈ N with ta ≥ T are removed.

The result of each Round is the ordered set of agents N \ T , and the set of
terminal agents T . Only the terminal agents are assigned their final utility.

Definition 1 (Utility). The utility of each agent a ∈ T is the negative amount
he paid

ua = −ma. (4)

2.2 Queue: A Game on Updating Sequences

Formally, Queue is G = G(F,Q, T, k, p, x, x0, w), where F,Q, T, k and p have
the same meaning as in Section 2.1, x is the number of entering agents after
each Round, x0 is the initial size of N and w is the horizon, i.e. the number of
repetitions of Round.

Queue aggregates Round in the following two simple phases. Starting with
N 1 s.t. |N 1| = x0, and ma, ta = 1 for each a ∈ N 1. We repeat them w-times.

1. The agents in N t play Round and non-terminal agents proceed to the next
iteration.

N t+1, T t+1 ← O(N t). (5)

2. x new agents enter the game

N t+1 ← N t ∪X, (6)

where X is a set of agents with ma, ta = 0, and |X| = x. These new agents
are sorted to the end of N t+1.

In the last Round, all agents terminate, T w ← T w ∪Nw.

The new agents come from universum U . The strategy of all agents is then
given as π = ×a∈Uπa. We denote space of all such strategies as Π.

Each agents wants to choose strategy πa, which maximizes their utility in G
given strategies of other agents π−a. A strategy profile π ∈ Π is an equilibrium,
if no agent can increase his utility. Formally,

Definition 2 (ϵ-Equilibrium). π ∈ Π is an ϵ-equilibrium of G if ∀ π ∈ Π,
∀t ∈ {1, . . . w} and ∀a ∈ T t,

Eπ [ua(π)] ≥ E(πaπ−a) [ua(πa, π−a)]− ϵ. (7)

We note that the equilibrium always exists which can be shown by a standard
transformation to a normal form game.
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2.3 Avalanche Effect

Intuitively, every agent wants to pay as little as possible, while avoiding paying
Q. This translate to paying more than the others. However, if all agents adapt
this reasoning, the only option to avoid paying Q is to pay F . We formally show
this in Section 3.1

Crucially, not all other agents can use this reasoning thanks to the probability
of ignorance. But as that vanishes, the agents should be incentivised to pay more.
Similarly, if the number of entering agents increases, so should the total payment.
We formally capture this in the avalanche effect.

Definition 3 (Avalanche effect). We say that Queue exhibits the avalanche
effect if at least one of the following holds in equilibrium when changing p, or x.

1. The expected terminal payment of all agents is increasing with p→ 0+

lim
p→0+

d

dp

∑
a∈T

ma < 0. (8)

2. The expected terminal payment of all agents decreases slower than 1/x

d

dx

∑
a∈T

ma > 0, ∀x > 0. (9)

2.4 Division Problem

In our model, the judiciary period is split into T equal time intervals and sorted
at the start of each interval. The central authority can process kT offenders over
the judiciary period, and xT will enter the system.

The central authority can influence the system in two ways.

1. it can choose how often the sorting takes place, and
2. it can virtually split the entering offenders into g groups of size x/g, and

process k/g offenders in each.

The Division problem is how to set T and g to maximize the expected revenue
the central authority receives. We refer to the two cases as Time-Division problem
and Group-Division problem respectively.

3 Analytic Solution

As described in Section 1, the individual risk when the central authority processes
the agents in random order is typically small, i.e. kQ/|N | ≪ F . Each agent is
also guaranteed to pay kQ/|N | if everyone cooperates and shares the costs of
those entering the legal process. Let us begin by showing that this is not the case
in our proposed system. That is, there is no coalition can benefit from choosing
to pay nothing and share the cost of those forced to pay Q. In our setting, this
is analogous to coalition proofness.
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Proposition 1. Let A be a set of agents using strategy πa = σ0 ∀a ∈ A, and
sharing the cost, i.e. their utility becomes

ũa = − 1

|A|

w∑
i=1

∑
a∈A∩T i

ma, ∀a ∈ A.

If ũa < 0, then ∃a′ ∈ A s.t. a′ can deviate and increase his utility.

Proof. We split the proof into two parts according to how much an individual
needs to contribute.

1. 0 > ũa > Q: In this situation, not all agents of A were forced to pay Q.
Consider the agent a′ ∈ N who terminated last. Then, since a′ paid zero, his
original utility is zero and ũa < ua. Therefore, a′ would benefit from leaving
the coalition A.

2. ũa = −Q: In this case, all agents were forced to enter the legal process. Any
a ∈ A would therefore benefit from paying the fine, since then his utility is
ua = −F > −Q = ũa.

While existence of an analytic solution of Queue remains an open question,
we can find it in certain special cases.

3.1 Active participants

Let us first focus on a situation when no agent forgets to participate in Round,
i.e. p = 0. Then it is easy to see that πa = σF is unique equilibrium. Consider
the first agent a ∈ N in the first Round, who chose to pay µa < F . Then he is
forced to pay Q, resulting to utility ua = −Q−µa < −F . Therefore, switching to
paying F is beneficial and the strategy of paying µa < F is not an equilibrium.
This means all agents will pay F in the first Round, and the situation thus repeat
in the following Round.

3.2 w-Fines: Special Case of Queue

Let us focus on the system without the introduction of the option to donate a
portion of the fine. Thus after scaling currency we can let F = 1, and there are
only two pure strategies σ0, σF the agents can take. If now T = w and no agents
are added after each Round x = 0, we call the game w-Fines.

Definition 4 (w-Fines). We refer to reduced Queue

F(w,F,Q, k, p, x0) = G(F,Q,w, k, p, 0, x0, w)

as w-Fines.

We begin by showing a crucial property of w-Fines.
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Lemma 1. In the w-Fines, the expected payment of ∀a ∈ N depends only on
the actions of agents in front of a.

Proof. If a pays zero, he remains in the Queue and is sorted in front of agents
who were behind him. He is potentially forced to pay Q, depending on the actions
of agents in front of him. If he pays F = 1, he is removed. In either case, the
actions of agents behind a have no impact on his payment. ⊓⊔

In each Round, a ∈ N has na−1 agents in front of him. Due to the probability
of ignorance, even if all the agents decide to pay, a can estimate the probability
that at most k− 1 will forget. If that happens, a will be forced to pay Q in this
Round. Formally,

Definition 5. Let n be a positive integer. We denote by α(p, n, k) the probability
that in n− 1 independent coin tosses with the head probability p, the number of
heads is less than k.

Since α will be important in the following discussion, we briefly mention some
of its properties.

Lemma 2. Let k < np, then α(p, n+ 1, k) ≤ e−
(np−k)2

2np .

Proof. Let ξi denote the random variable such that

ξi =

{
1 w.p. p,
0 otherwise ,

and ξn =
n∑

i=1

ξi. Thus, E[ξi] = p and E[ξn] = np. As per the Chernoff bounds,

P[ξn ≤ (1− δ)np] ≤ e
−δ2np

2 , for all 0 < δ < 1. Thus α(p, n+ 1, k) = P[ξn ≤ k] ≤
e−(1−

k
np )

2
np/2 = e−

(np−k)2

2np .

Proposition 2. If α(p, n, k) ≤ F/Q ≤ 1
4 then np > k. Moreover for each posi-

tive integer w and large enough n, α(p, n, k) ≥ α(p, wn,wk).

Proof. For γ ∼ B(n, p) if p < 1 − 1
n , then 1

4 < Pr(γ ≤ np) [4]. Therefore, when
1
4 ≥

F
Q , then k < np. Further, we note that Lemma 2 is tight for large enough

np. Hence, it suffices to prove the proposition for the upper bound e−
(np−k)2

2np for
which the statement clearly holds.

Finally, we report a result that strengthens the second part of Proposition 2
for w = 2.

Theorem 1. α(p, n, k) ≥ α(p, 2n, 2k) for 1 ≤ k < np− p.

The proof can be found in Appendix A.



8 D. Sychrovsky et al.

Single Sorting Instance We start by analysing the 1-Fines game, which is
equivalent to one Round. In this case, when an agent is sufficiently far from the
start of N , it is beneficial to pay nothing, while near the start it is beneficial to
pay and avoid paying Q. The boundary between the two will prove important.

Definition 6 (Critical strategy). Let r > 0 be the smallest integer such that
α(p, r, k)Q ≤ F . Then r is called critical position.

The critical strategy is

πcrit
a (na, ta,ma) =

{
σF if α(p, na, k)Q > F,

σ0 otherwise.
(10)

We note that ta = 1 and ma = 0 ∀a ∈ N for 1-Fines. We will show that πcrit
a is

the only equilibrium of the 1-Fines. First, we define αcrit as the probability with
which an agent is forced to pay Q when all agents follow πcrit

a .
Proposition 3. Let r be the critical position. Then if all agents but a follow
πcrit
b , and a uses σ0, then a is forced to pay Q w.p.

αcrit(p, r, na, k) =

{
α(p, na, k) if na < r,

α(p, r, k − (na − r)) otherwise.
(11)

Proof. Fix a ∈ N . When α(p, na, k) > F/Q (i.e. na < r), then agents in front
of a pay F and thus a will not pay Q only if enough of them forget. If na ≥ r,
then na− r agents choose not to pay. Therefore, a only needs k− (na− r) of the
r agents to forget. ⊓⊔
Observe that αcrit ≤ α, since some agents may choose to pay zero. Also, by
Definition 5, αcrit = 0 for na > r + k.

Proposition 4. Let r be the critical position and let all agents follow πcrit
a ,

except for a ∈ N , whose strategy is πa = (q, 1 − q). Then the expected payment
of a is

(1− p− q)F + (p+ q)αcrit(p, r, na, k)Q. (12)

Proof. By definition of πa, a pays F w.p. 1− p− q and he does not forget. If he
does, or pays zero w.p. q, he is forced to pay Q w.p. αcrit(p, r, na, k). ⊓⊔
Corollary 1. Let r be the critical position and let all agents follow πcrit

a . Then
the expected payment of a ∈ N is

G1
a(p, na, k) =

{
(1− p)F + pαcrit(p, r, na, k)Q, if na < r,

αcrit(p, r, na, k)Q, otherwise.
(13)

Theorem 2. The strategy πcrit
a is unique equilibrium of 1-Fines.

Proof. Consider a ∈ N in the sorted order. We will show by induction πcrit
a is

a unique best-response to strategies of agents in front of a given agent. For the
first agent, πcrit

a clearly maximizes the utility −Ga of a. In the induction step
we assume a′ in front of a follow πcrit

a . Following Lemma 1, the actions of the
others can be arbitrary. Observe the πcrit

a minimizes the expected payment (12).
Thus a wants to follow πcrit

a . ⊓⊔
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More Sorting Instances In this section we present analytic solution of the
general w-Fines game, w ≥ 1. We start by defining extension of πcrit

a , and showing
no agent can benefit by deviating from it. Later, we discuss some properties of
this analytic solution.

In w-Fines, no agents are added after sorting. After the first Round the
game is thus identical to (w − 1)-Fines. This recursive relation motivates us to
introduce the analogues of the variables used in the previous section recursively.
We use upper index to denote the game length w and number of Round, i.e. in
the previous section we would use r1,1 for the critical position r.

We extend Definition 6 of critical strategy to pay F if a’s position is in
front of some critical position rw,t, defined below. Note that since the second
Round corresponds to (w− 1)-Fines, rw,l = rw−1,l−1 for l > 1 and in particular
rw,w = · · · = r2,2 = r1,1 = r.

Definition 7 (w-Critical strategy). The w-critical strategy is

πcrit,w
a (na, ta,ma) =

{
σF if na < rw,ta ,

σ0 otherwise.
(14)

Let all agents follow πcrit,w
a . Then if w > 1 and a ∈ N 1 does not terminate in

the first Round, his expected payment in the remaining w − 1 rounds is

Gwa (p, na, k) = Eγ∼B(min(na,rw,1)−1,1−p)[G
w−1
a (p, na − γ − k, k)], (15)

where Gw−1
a is the recursive extension of the expected payment G1

a (see Corol-
lary 1). A formula for Gw

a is given in Proposition 5 below.
In words, since all agents positioned in front of min(na, r

w,1) want to pay
F , a’s position decreases by γ + k, γ ∼ B(min(na, r

2,1) − 1, 1 − p). At the new
position, a is expected to pay Gw−1

a .

Proposition 5. Let all agents follow πcrit,w
a , and w > 1. Then the expected

payment of an agent a ∈ N is

Gw
a (p, na, k) =

{
(1− p)F + pXw(p, rw,1, na, k), if na < rw,1,

Xw(p, rw,1, na, k), otherwise,
(16)

where
Xw(p, rw,1, na, k) =

αcrit(p, rw,1, na, k)Q+ (1− αcrit(p, rw,1, na, k))Gwa (p, na, k)

is a’s expected payment if he does not pay F in the first Round.

It remains to determine critical positions rw,l. Recursively, rw,l = rw−1,l−1

for l > 1. Hence it remains to define rw,1. Similarly to Definition 6, we de-
fine the critical position in the first Round as the smallest rw,1 ∈ N such that
α(p, rw,1, k)Q+ (1− α(p, rw,1, k))Gwa (p, rw,1, k) ≤ F .

In words, assume all agents in front of a want to pay F . In the first Round, if
a pays zero he risks paying Q w.p. α and the expected payment in the remaining
rounds w.p. 1−α. The critical position rw,1 is the smallest position na at which,
assuming all agents in front of it try to pay F , it is beneficial to pay zero.
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Lemma 3. Let w > 1. Then rw,1 ≥ rw−1,1 + k.

Proof. By definition, rw,1 is the smallest integer such that α(p, rw,1, k)Q+ (1−
α(p, rw,1, k))Gwa (p, rw,1, k) ≤ F . For a contradiction we assume that rw,1 <
rw−1,1 + k. It suffices to show that Gwa (p, rw,1, k) > F since this inequality along
with Q > F violates the defining property of rw,1.

If rw,1 − k < rw−1,1 then for each γ ≥ 0,

Gw−1
a (p, rw,1 − γ − k, k) = (1− p)F + pXw−1(p, rw−1,1, rw,1 − γ − k, k),

see Proposition 5. Moreover, by the defining property of rw−1,1

Xw−1(p, rw−1,1, rw,1 − γ − k, k) > F.

Hence for each γ ≥ 0,

Gw−1
a (p, rw,1 − γ − k, k) > F

and thus Gwa (p, rw,1, k) > F . ⊓⊔

We are now ready to show the main result of this section.

Theorem 3 (Equilibrium of w-Fines). πcrit,w
a is unique equilibrium of w-

Fines.

Proof. We proceed by induction on w. For w = 1 we use Theorem 2. After the
first Round, the game corresponds to (w−1)-Fines and there is a unique equilib-
rium by the induction assumption. In the first Round, we can use a modification
of proof of Theorem 2: consider agents of N 1 in the sorted order and use induc-
tion over agents. For an agent a ∈ N 1 let his strategy be πa = (q, 1 − q) in the
first Round, he follows πcrit,w

a from the second Round, and let all agents in front
of him follow πcrit,w

a . Then his expected payment is

(1− p− q)F + (p+ q)Xw(p, rw,1, na, k), (17)

This is because w.p. 1 − p − q he pays F and leaves. Otherwise, since all
agents in front of him follow πcrit,w

a , and he also follows πcrit,w
a from the second

Round, his expected payment is Xw(p, rw,1, na, k).
Strategy πcrit,w

a is chosen to minimize a’s expected payment (17). Therefore,
a will follow it even in the first Round. ⊓⊔

Proposition 6. Let w > 0 be an integer and let all players follow πcrit,w
a . Then

the total expected payment of w-Fines is

wkQ+ F (1− p)

w∑
t=1

(rt,1 − 1). (18)

Proof. In the first Round, (1− p)(rw,1− 1) agents are expected to pay F , and k
are forced to pay Q. In the remaining rounds, the situation is analogous. ⊓⊔
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Theorem 4. Equilibrium strategies of all w-Fines exhibit the avalanche effect.

Proof. Since limp→0+ α(p, n, k) = 1 and Q > F , the critical position in the last
Round rw,w → ∞. Using Lemma 3, the equilibrium strategies of all w-Fines
satisfy πcrit,w

a → σF ∀w ≥ 1. Thus, πcrit,w
a satisfies Definition 3. ⊓⊔

In this simplified model, decreasing the probability of ignorance virtually
increases the number of state employees assigned to processing the fines. This
allows the central authority to increase the total payment through advertising,
rather than hiring additional employees, which may be much cheaper. We show
in Section 4 that these results translate well to a more general case where non-
zero number of agents enter the system in each Round.

Division problem To give a partial answer to the Division problem in this
setting, we will compare the total expected payment of w-Fines with k, and
1-Fines with wk.

Theorem 5. Let Q ≫ F . Then the equilibrium strategy of F(w,F,Q, k, p, x0)
achieves a higher total payment than the equilibrium of F(1, F,Q,wk, p, x0) in
expectation by at least F (1− p)w[k(w − 1)− 1].

Proof. By Proposition 6 and Lemma 3, the expectation of the total payment of
F(w,F,Q, k, p, x0) is at least

wkQ+ F (1− p)

w∑
t=1

(r1,1(k)− 1) + (t− 1)k,

while the expectation of the total payment of F(1, F,Q,wk, p, x0) is

wkQ+ F (1− p)(r1,1(wk)− 1).

To finish the proof, we note that by Proposition 2, if Q ≫ F then wr1,1(k) ≥
r1,1(wk). ⊓⊔

4 Experiments

We investigate two approaches based on how the agents choose their payments. In
Section 4.1, we define a simple strategy based on how the agent’s position changes
over the course of the Queue. In Section 4.2, we use reinforcement learning to
obtain a strategy which approximates equilibrium. In both cases we simplify
the model by assuming the function πa is the same for all agents. The code is
available at GitHub.

https://github.com/DavidSych/Rule_Enforcing_Through_Ordering/tree/master
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4.1 Basic Rational Strategy

To model behaviour of real decision makers, we introduce basic rational strategy
(BRS). Informally, each agent keeps track of a quantity he is willing to pay in
each Round. If, based on his shift in Queue since last Round, he determines he
will reach the beginning before T steps, his willingness to pay increases. Formally,

Definition 8 (basic rational strategy). Let a ∈ N , (n′
a, t

′
a,m

′
a) be the ob-

servation of a in previous Round, and (na, ta,ma) his current observation. We
call ωa the willingness to pay of a. In the first Round a participates in, i.e.
when ta = 0, his willingness to pay is ωa = 0. In subsequent Round games, the
willingness to pay is updated before declaring πa according to

ωa ←

{
min(F −ma, ωa + 1), na < (na − n′

a)(T − ta),

max(0, ωa − 1), otherwise.
(19)

The strategy of a is to pay ωa, i.e. πa = σωa .

Note that this is a generalization of the approach introduced in Section 2.1, as πa

is not a function of only the observation in the current Round, but also depends
on history. This makes this strategy non-Markovian. As such, the Definition 2
does not apply. However, in our experiments we simply assess the effect of agents
using BRS, and make no claims regarding its optimality.

4.2 Reinforcement Learning

In order to approximate an equilibrium of Queue, we employ an iterative algo-
rithm. In each iteration, the algorithm approximates πa such that

πa ∈ argmax E(πa,π−a) [ua(πa, π−a)] . (20)

In words, we find πa such that it maximizes utility of a, assuming N \{a} follow
π. We denote as τ the iteration of the learning algorithm and πτ the strategy
the algorithm approximates the best-response against in iteration τ .

We use Proximal policy optimization (PPO) [5] to find π, utilizing trajectories
of all terminal agents for the update. For details on our implementation, see
Appendix B. This approach is not guaranteed to converge in general but if it
does converge, the resulting strategy is an equilibrium [6]. Similar approach was
successfully used before [7].

NashConv In order to quantify the quality of the learned solution, we adapt
the notion of NashConv [8]. NashConv measures the negative difference in utility
agents are expected to receive under πτ and the approximate best-response πτ+1.
We approximate the latter by having a fraction of agents ρ follow πτ+1 while
the rest follows πτ . Formally,
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Fig. 1: Evolution of NashConv during training, averaged over one hundred ran-
dom seeds. The colored ares show standard error.

Definition 9 (NashConv). Let each agent added to Queue follow πτ+1 w.p. ρ
and πτ otherwise. Let N be the set of agents following πτ+1 and their expected
utility

BRU(ρ, πτ+1, πτ ) = E(
πτ+1

N
,πτ

−N

) [ua(π
τ+1
a , πτ

−a)|a ∈ N
]
.

Then
NashConvτ (ρ) = BRU(ρ, πτ+1, πτ )− Eπτ [ua(π

τ )] . (21)

NashConv and ϵ-equilibrium are closely connected – if ρ is small enough such
that |N | ≪ |N |, then NashConv ≈ ϵ. In Figure 1 we present a representative
example of the evolution of NashConv during training. We averaged the results
over one hundred random seeds, and also show the standard error. The results
suggest that, although there is a considerable amount of noise, the algorithm was
able to reach a sufficiently close approximation of the equilibrium. Moreover, we
verified this trend translates to other experiments presented below.

4.3 Results

In this section, we numerically demonstrate the Avalanche effect and the Division
problem. Specifically, we show the total expected revenue, which is given as
Eπ

[∑
a∈T ma

]
. Unless stated otherwise, we use F = T = 4, Q = 6, x = x0 = 32,

k = 2 and p = 1/2 in all our experiments. Note that with these parameters if
the ordering is not introduced6, the individual risk in the first Round is kQ/x =

6 That is if the agents in N t which are forced to pay Q are selected at random.
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Fig. 2: Expected total payment of terminal agents for varying probability of
ignorance p (left) and number of incoming offenders x (right) averaged over ten
random seeds and showing also the standard error. The figures demonstrate the
Avalanche effect defined in Section 2.3.

0.375 ≪ F . Thus it is not rational to pay F and the revenue of the central
authority would be kQ = 12.

Note that the standard error is considerably high in all figures presented
below. This is partly due to the noise introduced by the learning algorithm,
which (if convergent) find a course correlated equilibrium. As these may vary
significantly in e.g. social welfare, similar variance can be expected in our case.

Avalanche Effect In Figure 2 we show the total expected payment as a function
of the probability of ignorance p, and the number of entering agents x. The
results suggest that the Queue exhibits the Avalanche effect in a general setting.
In fact, it exhibits both properties of Definition 3. Interestingly, the learned
solution achieves a considerably higher total payment compared to BRS.

Division problem In this section, we numerically study the Division prob-
lem introduced in Section 2.4. Results for both the Time- and Group-Division
problem are presented in Figure 3.

For the Time-Division problem, BRS seems to drastically overpay the learned
strategy if the sorting is frequent, i.e. T is large. On the other hand, when T is
small the willingness to pay doesn’t increase. This leads to paying only kQ = 48
for T = 1, while the learned strategy prefers to pay more. When the game is
sorted more often, the learned strategy seems to favor lower total payments.

In the Group-Division scenario, both BRS and the learned strategy pay less
in larger system. Splitting the game into several smaller thus increases the to-
tal payment of the offenders. This is in agreement with the analytic solution
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Fig. 3: Expected total payment of terminal agents for varying number of sortings
T (left) and number of splits g (right). The results are averaged over ten random
seeds and the colored areas show standard error. The figures investigate the
Division problem defined in Section 2.4.

presented in Section 3.2, suggesting the incoming agents don’t impact Queue
much.

Exploitability of Basic Rational Strategy The BRS is a heuristic designed
to capture realistic behaviour of humans. However, it is not guaranteed to make
optimal decisions. In this section, we investigate exploitability of BRS. Specifi-
cally, we let 90% of the agents follow BRS, with the rest refining their strategy
using PPO. We compare the expected payment of agents following each of the
strategies after convergence. We present our results in Figure 4 for varying prob-
ability of ignorance p and number of entering agents x. In all cases the learning
algorithm is able to find strategy which achieves vastly lower expected payment,
suggesting the BRS is quite exploitable.

5 Conclusion

In this work, we suggest a simple mechanism for rule enforcing, like collecting
fines for traffic violations in large cities, by a small number of administrators.
We show analytically and on realistic experiments that this simple mechanism
exhibits the Avalanche effect and thus supports non-cooperation of offenders.
We quantify the fines collection in expectation. Finally, we present some initial
results towards understanding the effective use of the administrators, i.e., the
Division problem.

Future work: Further study of the Division problem, in particular possible
strengthening of Lemma 3 is our work in progress.
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Fig. 4: Expected total payment of terminal agents for varying probability of
ignorance p (left) and number of incoming offenders x (right) averaged over ten
random seeds and showing also the standard error. The training was done with
90% of agents following BRS., i.e. approximating best-response to BRS.

We see a limitation of our numerical approach in that we limit ourselves to
scenarios where all agents share the same strategy πa. We would like to improve
on our results by having each agent follow one of a few leaders, similar to how
we investigated exploitability of BRS.

A Proof Of Theorem 1

Theorem 1 α(p, n, k) ≥ α(p, 2n, 2k) for 1 ≤ k < np− p.

We will prove the theorem in a sequence of lemmas. Note that α(p, n, k) =
P[X ≤ k] for X ∼ B(n− 1, p).

Lemma 4. For random variables X ∼ B(n, p) and Y ∼ B(2n, p) and 1 < k <
np, we have P[X ≤ k] ≥ P[Y ≤ 2k].

Proof. We make use of the Camp-Paulson approximation [9,4] to the normal
distribution for a binomial distribution which states that for X ∼ B(n, p)∣∣∣∣P[X ≤ k]−Φ

(
c−m

θ

)∣∣∣∣ ≤ 0.007√
np(1− p)

,

where c = (1 − b)r
1
3 ,m = 1 − a, θ =

√
br

2
3 + a, b = 1

9(k+1) , a = 1
9(n−k) , r =

(k+1)(1−p)
p(n−k) , and Φ(x) = 1√

2π

∫ x

−∞e−
t2

2 dt.
Since Φ is an increasing function it suffices to show the inequality between

the arguments of Φ for k < np. We define r(n, x) = (x+1)(1−p)
p(n−x) , c(n, x) =
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1− 1

9(x+1)

)
r(n, x)

1
3 = 9x+8

9(x+1)r(n, x)
1
3 , m(n, x) = 1 − 1

9(n−x) and θ(n, x) =√
1

9(x+1)r(n, x)
2/3 + 1

9(n−x) .

Thus we need to show that c(n,x)−m(n,x)
θ(n,x) > c(2n,2x)−m(2n,2x)

θ(2n,2x) for k < np. We
prove this in two parts. Our first claim will show that there is a Kn < np, where
c(n, x)−m(n, x) is zero. ⊓⊔

Claim. c(n, x)−m(n, x) is an increasing function of x for 0 < x < n and there
exists Kn < np such that c(n, x) < m(n, x) for all x < K and c(n, x) > m(n, x)
for all x > K.

Proof. It is easy to see that for 0 < x < n, r(x) and c(x) are increasing functions
and m(n, x) is a decreasing function. Thus for 0 < x < np we have 1 > m(n, x) ≥
1 − 1

9(n−np) and (1 − 1
9(x+1) ) ≤ (1 − 1

9(np+1) ). We first find the condition for

x > 0 such that r(n, x) <
(

y−1
y

)3

for some y > 0. Note here that we can

assume that such an x exists as we are assuming p > 1
n . The inequality holds

for all x < np(y−1)3−y3(1−p)
y3(1−p)+p(y−1)3 . Since y > 0, we have that the inequality holds

for all x < np
(

y−1
y

)3

− 1 + p. Thus for y = 9(n − np) we have, c(n, x) =

9x+8
9(x+1)

(
1− 1

9(n−np)

)
< m(n, x).

c(n, np) =
9np+ 8

9(np+ 1)

(
(np+ 1)(1− p)

p(n− np)

)1/3

=
9np+ 8

9(np+ 1)

(
np+ 1

np

)1/3

≥ 9np+ 8

9(np+ 1)

(
np+ 1

np

)1/3

=
9np+ 8

9np

(
np

np+ 1

)2/3

=

(
1 +

8

9np

)(
np

np+ 1

)2/3

It is easy to see that
(
1 + 8

9x

) (
x

x+1

)2/3

> 1 for all x > 0. Thus c(n, np) > 1 >

m(n, np). This proves the claim. ⊓⊔

Notice that Kn is very close to np but nevertheless lower than np. We are now
ready to partly prove Theorem 1.

Lemma 5. For 0 < x < K2n

2 , c(n,x)−m(n,x)
θ(n,x) > c(2n,2x)−m(2n,2x)

θ(2n,2x) .

Proof. To do this we see some properties of c(n,x)−m(n,x)
θ(n,x) . Individually the func-

tions compare as follows for 1 ≤ x < n.
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(
θ(2n, 2x)

θ(n, x)

)2

=
1

2

(
x+ 1

2x+ 1

)1/3
(2n− 2x)1/3(1− p)2/3 + (2x+ 1)1/3p2/3

(n− x)1/3(1− p)2/3 + (x+ 1)1/3p2/3

≤ 1

2

(
x+ 1

2x+ 1

)1/3
(2n− 2x)1/3(1− p)2/3 + (2x+ 2)1/3p2/3

(n− x)1/3(1− p)2/3 + (x+ 1)1/3p2/3

≤ 1

22/3

(
x+ 1

2x+ 1

)1/3

< 1

Also c(n,x)
c(2n,2x) = 21/3

(
9x+8
18x+8

)(
2x+1
x+1

)2/3

> 1 as this is a decreasing function

for x > 0 with its limit at 1, and m(n, x) − m(2n, 2x) = 1
9(2n−2x) −

1
9(n−x) =

− 1
9(2n−2x) < 0.
Thus we have c(2n, 2x) − m(2n, 2x) < c(n, x) − m(n, x). It follows that

Kn ≤ K2n

2 . Thus for x ≤ Kn we have θ(2n,2x)
θ(n,x)

c(n,x)−m(n,x)
c(2n,2x)−m(2n,2x) < 1 i.e.,∣∣∣ c(2n,2x)−m(2n,2x)

θ(2n,2x)

∣∣∣ ≥ ∣∣∣ c(n,x)−m(n,x)
θ(n,x)

∣∣∣ but both quantities are negative and so
c(2n,2x)−m(2n,2x)

θ(2n,2x) ≤ c(n,x)−m(n,x)
θ(n,x) . For Kn < x < K2n

2 we have c(2n,2x)−m(2n,2x)
θ(2n,2x) ≤

0 ≤ c(n,x)−m(n,x)
θ(n,x) . ⊓⊔

Lemma 5 allows us to state a weaker result.

Corollary 2. For random variables X ∼ B(n, p) and Y ∼ B(n+ ⌈n/p⌉ , p) and
k < max{n2 , np}, we have P[X ≤ k] ≥ P[Y ≤ 2k].

Proof. The proof follows from the fact that n + n
p > 2n and 2x < (np +

n)
(

9n
p −9np−1

9n
p −9np

)
− 1 + p < Kn+n

p
. ⊓⊔

Now we can complete the proof of Theorem 1.

Proof (of Theorem 1). Notice that c−m and θ are monotonically increasing in
x. The difference between using n and 2n is just the rate of increase. We have
shown for x < K2n, (c −m)(n, x)θ2(2n, 2x) > (c −m)(2n, 2x)θ2(n, x). Now we
show the inequality holds for x = np, i.e., the two functions haven’t crossed each
other.

Define r1 = np+1
np , r2 = 2np+1

2np , b1 = 1
9(np+1) , b2 = 1

9(2np+1) , a = 1
18(n−np) ,

θ1 = b1r
2/3
1 + 2a and θ2 = b2r

2/3
2 + 2a. Thus we have

1 ≤ r1
r2

= 2

(
np+ 1

2np+ 1

)
=

2b2
b1
≤ 2 (22)

(c−m)(n, np)θ2(2n, 2np)− (c−m)(2n, 2np)θ2(n, np)

= ((1− b1)r
1/3
1 − 1 + 2a)θ2 − ((1− b2)r

1/3
2 − 1 + a)θ1
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=
21/3(2np+ 1)1/3(9np+ 8)(n− np)− 22/3(np+ 1)1/3(18np+ 8)(n− np)

81[(np+ 1)(2np+ 1)]2/32np(n− np)

+
2[2np(np+ 1)]2/3 − 2[np(2np+ 1)]2/3 + 18(np+ 1)21/3[np(2np+ 1)]2/3]2/3

81[(2np+ 1)(np+ 1)]2/3(2np)(n− np)2

− 18(2np+ 1)[2np(np+ 1)]2/3

81[(2np+ 1)(np+ 1)]2/3(2np)(n− np)2

+
18(n− np)[np(np+ 1)]1/3(2np+ 1)2/3 − 9(n− np)[2np(2np+ 1)]1/3(np+ 1)2/3

81(n− np)[(np+ 1)(2np+ 1)]2/3(2np)

+
9[(np+ 1)(2np+ 1)]2/3(2np) + 2(np+ 1)2/3(2np+ 1)1/3(2np)1/3

81(n− np)[(np+ 1)(2np+ 1)]2/3(2np)2

− 2(np+ 1)1/3(2np+ 1)2/3(np)1/3

81(n− np)[(np+ 1)(2np+ 1)]2/3(2np)2

Using p3 − q3 = (p− q)(p2 + pq + q2) we have,

21/3(2x+ 1)1/3(9x+ 8)− 9[2x(2x+ 1)]1/3(x+ 1)2/3

= 21/3(2x+ 1)1/3[8 + 9x1/3(x2/3 − (x+ 1)2/3]

= 21/3(2x+ 1)1/3
[
8 +

(
−9x1/3(2x+ 1)

x4/3 + x2/3(x+ 1)2/3 + (x+ 1)4/3

)]
(23)

and,

18[x(x+ 1)]1/3(2x+ 1)2/3 − 22/3(x+ 1)1/3(18x+ 8)

= (x+ 1)1/3[8 + 18x1/3((2x+ 1)2/3 − (2x)2/3]

= (x+ 1)1/3
[
8 +

(
18x1/3(4x+ 1)

(2x+ 1)4/3 + (2x(2x+ 1))2/3 + (2x)4/3

)]
(24)

Note that the sum of 23 and 24 is positive for x ≥ 1. Thus all the terms with
n − np in the numerator add up to a positive quantity. The only other negative
component is 18(np+1)21/3[np(2np+1)]2/3−18(2np+1)[2np(np+1)]2/3

81[(2np+1)(np+1)]2/3(2np)(n−np)2
, which is dominated by

9[(np+1)(2np+1)]2/3(2np)

81(n−np)[(np+1)(2np+1)]2/3(2np)2
.

Thus c(n,np)−m(n,np)
θ(n,np)

/
c(2n,2np)−m(2n,2np)

θ(2n,2np)
≥ θ(n,np)

θ(2n,2np)
≥ 1.

⊓⊔

B Learning Algorithm

The shared strategy πa is represented by a neural network and trained from
trajectories of all terminal agents. When selecting the strategy for a Round, we
mask all actions which would lead to ma+µa > F . This makes the agents unable
to overpay the fine F . We use fully-connected networks for both the actor and the
critic. Both take as input the observation7 of a in Round, i.e. (na, ta,ma). The
7 We normalize the observation to [0, 1]3.
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Parameter Value Description
ε 0.05 Policy update clipping
γ 1 Reward discounting
λ 0.95 Advantage decay factor

Ntrain 32 Number of training updates per cycle
Nepochs 512 Number of training epochs
Ntrain 2 · 104 Train buffer size
αactor 3 · 10−4 Actor learning rate
αcritic 10−3 Critic learning rate
cH 10−3 Entropy regularization weight
c 0.1 Gradient norm clipping

Table 1: Hyperparameters of the learning algorithm.

actor network has two hidden layers with four hidden units, and the critic has
three hidden layers with 32 units each, all using the ReLU activation function.
The rest of the hyperparameters are given in Table 1.
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